Estaba preparando una entrada sobre gestión del riesgo en un crossfitero muy cañero al que se le ha disecado una coronaria y no quiere que se le vuelva a disecar. Me puse a escribir, y al final me han salido 3 artículos.

  • El primero se centra en el estrés hemodinámico con los ejercicios dinámicos de fuerza.
  • Otro muy curioso sobre la maniobra de Valsalva. Vamos a darle una vuelta de tuerca a esta joya de la fisiología, para ver que el tan extendido consejo de sustituir el Valsalva por una espiración forzada, es uno más de los ejemplos del ser humano diciendo cosas raras y jugando a ser dios.
  • Terminaremos la serie con el artículo que integra estos aprendizajes en la gestión del riesgo de nuestro crossfitero de competición. Uno de esos casos con mucha miga.

Pero ahora, vamos a ver cómo cambian los conceptos sobre el tipo de ejercicio, los beneficios y el estrés hemodinámico a medida que aumentamos la carga. Intentaremos aclarar cual es el ejercicio más eficaz y seguro en un contexto de prescripción prudente y en la rehabilitación cardiaca (RHC).

Me ha quedado un poquito técnico, pero a los médicos que tratáis con deportistas, fisioterapeutas y a profesionales de la educación física en general, quizás os parezca interesante.

Que es el entrenamiento contra resistencia?

El entrenamiento contra resistencia (del ingles Resistance Training) se suele utilizar para hablar del entrenamiento de fuerza, pero en realidad se refiere a cualquier tipo de entrenamiento muscular contra una resistencia. Y puede estar orientado a distintos objetivos. Uno de ellos es el entrenamiento de la fuerza. 

Si no conocéis el concepto de repetición máxima (RM): Una RM o el 100% de una RM se refiere a la mayor cantidad de peso que se puede levantar con una técnica correcta una sola vez. Sería imposible levantarla 2 veces seguidas. Supongamos que para ti son 50 kg para un press de pecho. El peso relativo con el que se trabaja contra resistencia se da en porcentajes con respecto a esos 50 kg. El 50% de una RM son 25 kg para el press de pecho en tu caso y el 80% de una RM serían 40 kg. Cuanto mayor es el peso relativo con el que trabajamos, menor es el tiempo hasta la fatiga o fallo y el número de repeticiones que podemos hacer.

Hasta el 20% de una RM no se produce compresión de las arterias que están dentro del músculo y el flujo sanguíneo aumenta con las demandas metabólicas del propio músculo. Esto permite repetir el gesto un monton de veces antes de que aparezca la fatiga. Este tipo de cargas son las que habitualmente movilizamos cuando hacemos ejercicio en la zona del entrenamiento de resistencia cardiovascular o Endurance Exercise.

La fuerza, la velocidad y la cadencia con la que repetimos el gesto, determinan la potencia del trabajo que estamos realizando y, simplificando mucho, también las demandas cardiovasculares y metabólicas del ejercicio. Por eso aumentan la presión arterial (PA) y frecuencia cardiaca (FC) con los ejercicios ”aeróbicos”.

En general, este tipo de entrenamiento produce biogénesis mitocondrial, mayor densidad de fibras musculares lentas de tipo I y mayor capilarización de los músculos. Hay mas capacidad respiratoria muscular, más capacidad de oxidar ácidos grasos y una mayor resistencia a la fatiga, además de un sin fín de beneficios clínicos.

Los ejemplos más habituales son las caminatas, la carrera, ciclismo…. Pero hoy no vamos a hablar de esto.

Cuando hablamos de ”Resistance Exercise”, en realidad nos estamos refiriendo a ejercicios con cargas superiores al 30% de una RM.

Este tipo de entrenamiento produce biogénesis ribosomal, un fenotipo de fibra más rápida tipo 2b, aumenta la sección transversal del músculo y se producen adaptaciones neurológicas que permiten activar más fibras musculares a la vez. Como cuando se juntan 4 personas para empujar un coche y gritan… “¡una, dos y trés!”. Si se turnasen para empujar, no lo moverían ni un palmo.

Según como hagamos el ejercicio contra resistencia, se puede orientar a priorizar unas aptitudes musculares sobre otras (tono, fuerza, potencia, resistencia muscular, etc). No voy a profundizar en esto. Me voy a centrar en el estrés hemodinámico que impone el ejercicio contra resistencia en función de la carga con la que trabajamos.

Cuando levantas 15 kg en el press de pecho (El 30% de una RM en tu caso), las arterias que irrigan tus pectorales se empiezan a comprimir. Aumenta la resistencia al flujo de sangre y, a diferencia de los ejercicios aeróbicos o muy dinámicos, además de la PA sistólica (PAS o “la alta”), también aumenta la diastólica (PAD o ”la baja”).

La incapacidad de aumentar el flujo y adaptarlo a las demandas de oxígeno, lo convierte en un tipo de ejercicio con un alto componente anaeróbico, y que lleva a la fatiga en poco tiempo. Y cuanto más aumenta la carga, más se comprimen las arterias y menor es el aporte de sangre y oxígeno al músculo. Con cargas por encima del 40-70% de una RM, el flujo sanguíneo a través del músculo se interrumpe por completo.

Suena mal, pero así mejoran la masa muscular y, sobre todo, la fuerza.

Y esto es muy bueno. La fuerza está muy asociada con mejoras importantes en el pronóstico cardiovascular y vital. Además, también mejoran la salud ósea, el control glucémico, la presión arterial y el perfil lipídico.

Por eso, hace ya tiempo que nadie duda de los beneficios de este tipo de entrenamiento y es una parte esencial de cualquier programa de ejercicio, tanto para la gente sana como para los pacientes de RHC.

En programas orientados a la salud y la prevención de enfermedades, se suelen recomendar de 2 a 3-4 series de un puñado de ejercicios que impliquen a la mayoría de los grupos musculares principales. A poder ser 2-3 días a la semana.

Lo que no está tan claro y se refleja en una evidente falta de uniformidad entre las distintas sociedades científicas, es el número de repeticiones y el peso relativo con el que hay que trabajar. Las recomendaciones pueden variar desde el 30% al 80% de una RM.

Vamos a intentar explicar, que cargas son y porque, las que nos interesan en el contexto de la prescripción de ejercicio.

El entrenamiento contra resistencia se puede hacer de forma dinámica o estática. En el primer caso habrá movimiento articular porque el músculo se estira y se encoje. En el segundo caso, el músculo se contrae, pero no se estira ni se encoge. Como cuando empujamos el coche a turnos.

En el rango de intensidades de entre el 30 y el 80% de una RM, el tipo de entrenamiento suele ser dinámico. Los esfuerzos estáticos son más habituales cuando trabajamos por encima del 100% de una RM o en las últimas repeticiones antes de fallar o claudicar.

Qué es mejor, ¿entrenar con baja carga y muchas repeticiones o con cargas más altas y menos repeticiones?

Es decir: ¿Trabajar con <50% de una RM y hacer muchas repeticiones (Low intensity strenght training o LIST) o trabajar al 70% y hacer menos repeticiones (High intensity strenght training o HIST)?

Tabla que muestra el número aproximado de repeticiones hasta el fallo que corresponde a cada carga relativa

Se han hecho varios estudios para intentar aclarar esta disyuntiva y los de mejor calidad metodológica aparecen recogidos en esta revisión.

Como hemos dicho, por su asociación con la enfermedad cardiovascular y la mortalidad y por su efecto en los factores de riesgo cardiovascular y en el desempeño y la calidad de vida, en la RHC nos interesa trabajar la masa muscular y la fuerza. Y para eso parece más efectivo el HIST que el LIST.

Solo con HIST se activan ciertas vías metabólicas que están implicadas en la hipertrofia y en las adaptaciones neurológicas de ganancia de fuerza. Incluso para una misma hipertrofia, la ganancia de fuerza es mayor.

La otra pregunta importante en RHC es, ¿cual de las 2 formas de entrenar es más segura? O, ¿cual de las dos impone un estrés hemodinámico menor?

Fijaos en la imagen:

Imagen obtenida de Lamotte M. Et al.

Este estudio compara el LIST (4 series de 17 repeticiones al 40% de una RM -cuadros negro-) con el HIST (4 series de 10 repeticiones al 70% de una RM -círculos blancos-) en sujetos isquémicos de RHC en un press de piernas.

Partiendo de una situación de reposo similar, la elevación de la PA sistólica (izda) y de la FC (derecha) es mayor con el LIST que con el HIST. Fijaos tambien como la respuesta hemodinámica aumenta a medida que hacemos más series y se acumula la fatiga.

Como es de imaginar, todo ejercicio dinámico contra resistencia aumenta la PA, la FC y el gasto cardiaco, pero, de hecho, y en contra de la creencia habitual, el LIST produce respuestas mayores que el HIST.

Los del estudio de Lamotte el al. son pacientes isquémicos de RHC. ¿Son distintos a los sujetos jóvenes, sanos y acostumbrados a entrenar de esta manera?

Podría ser, pero parece que no demasiado.

Este estudio de Sousa N. et al es el único “outlier” o excepción de la revisión. Y, aunque tiene un diseño que no permite comparar de forma fiable la respuesta hemodinámica de HIST y LIST, sí nos sirve para comprobar que en sujetos jóvenes muy habituados a este tipo de ejercicios, las respuestas hemodinámicas no son significativamente distintas de las de los pacientes de RHC.

Fijaos que aumentan, tanto la PA sistólica, como la diastólica, pero con respuestas bastante moderadas, que solo excepcionalmente superan los 200/110 mmHg.

Y en ambos estudios se trata de un press de piernas. Esto es importante de cara a comparaciones, como veremos un poquito más adelante en el artículo.

Realmente la evidencia no es de una calidad exquisita, pero es lo mejor que tenemos y en realidad es muy lógico. Hacer menos repeticiones implica menos trabajo, y menos tiempo para activar la respuesta hemodinámica.

Es decir. Más peso y menos repeticiones, parece la forma más efectiva y segura para entrenar en la RHC.

Esto explica porque la probabilidad de que se produzcan eventos adversos durante el entrenamiento dinámico de fuerza es muy bajo en las unidades de RHC y no mayor que con el entrenamiento de resistencia cardiovascular. Y tampoco mayor con HIST que con LIST.

¿Y que sucede por encima del 70% de una RM?

Estamos en la zona de las intensidades muy altas y máximas. Esto ya es cosa de los muy brutos.

Para saber que pasaba con la PA y la FC en esta zona de intensidades, Pstras et al. se lo preguntaron con mucha elegancia a 5 experimentados culturistas. Les pusieron un cateter de presión en la arteria radial y otro en la boca, mientras hacían una serie de ejercicios dinamicos con el 80-90-95-y 100% de una RM, hasta que fallaban (Ref).

La respuesta a este tercer grado con fines científicos fue, que triplicaban los valores de PA sistólica y diastólica (320/250 mmHg). A excepción de uno, que levantó la mano y dijo..

Perdona!…

…Yo la cuadruplico

480/350 mmHg.

En ese plan.

Este estudio refleja muy bien que el factor más importante en la tremenda diferencia en la elevación de la PA cuando lo comparamos con cargas inferiores, es la carga relativa.

Trabajando entre el 30 y el 70%, sin ir al fallo, a duras penas aumenta un 100% la PA sistólica, y con cargas superiores al 80% de una RM, se sobrepasa con relativa facilidad el 300% de la PA sistólica y diastólica de reposo, incluso desde las primeras repeticiones, que están lejos del fallo, y dejan fuera de la ecuación el efecto hemodinámico de la maniobra de Valsalva.

A partir del 80% de una RM, las repeticiones hasta la fatiga disminuyen, se prolonga la duración de la fase concéntrica y el comportamiento empieza a parecerse al del ejercicio isométrico máximo. Se recluta más masa muscular para completar el gesto y empezamos a trabajar en zonas cercanas al fallo que, a su vez, acaba activando el reflejo de Valsalva y sus consecuencias hemodinámicas.

Como veis en la gráfica, a mayor número de repeticiones, mayor es el trabajo efectivo y el tiempo para activar más respuesta hemodinámica, que se traduce en una elevación paulatina de la PA y la FC a lo largo de la serie. Incluso hasta el punto de que se registraban presiones mayores con N repeticiones al 95% de una RM que con la única repetición al 100% de una RM.

Sin duda, la masa muscular implicada en el ejercicio también influye. La PA era mayor en el press de ambas piernas, que en el de una pierna. Y mayor en ésta, que en el curl unilateral de biceps.

Este es el momento de recordar que en los estudios con cargas al 70% de una RM, el ejercicio también era el press de piernas Y que las cifras de PA rara vez pasaban de 200/110 mmHg.

Uno puede pensar que estos culturistas no representan al común de los mortales, y a lo mejor hay algo de cierto, pero hay distintos motivos para pensar que, en esta franja, es más importante la carga relativa (% de RM) que el peso absoluto.

A mode de curiosidad, en esta gráfica hay un detalle que apoya la idea de que la carga relativa influye más que el peso absoluto. Durante la fase excéntrica de la contracción, la PA disminuye. La hipotesis de los autores es que, como la fuerza absoluta es mayor durante la contracción excéntrica, la carga relativa con el mismo peso durante esta fase es menor y, por lo tanto, también la respuesta de la PA.

Además de la carga relativa, la masa muscular y el número de repeticiones, también influirán otros factores como la velocidad de ejecución de las repeticiones, el descanso entre repeticiones y entre series y, por supuesto, la maniobra de Valsalva.

Fijaos en la siguiente gráfica. Es una serie de 9 repeticiones y el fallo en el press de piernas al 95% de una RM.

En la última repetición, se aprecia un repunte de 50 mmHg de PA media, que coincide con los 50 mmHg que se registraban en la boca de estos sujetos cuando hacían Valsalva. La caída de la PA media en la repetición del fallo podría estar en ralación a distintos factores y, aunque la maniobra probablemente sea interrumpida, también puede reflejar la caída de la PA que se produce en los momentos iniciales de la fase II del Valsalva.

Por lo tanto, las respuestas hemodinámicas del entrenamiento de la fuerza por encima del 80% de una RM, son la suma de lo que sucede a nivel de las resistencias en el músculo, la respuesta del sistema cardiovascular y los efectos hemódinámicos de la maniobra de Valsalva.

Una vez más, estos valores tan extremos de PA al trabajar con cargas cercanas a nuestro límite, lo que nos vienen a sugerir, es que la función evolutiva de esos esfuerzos está limitada a tareas muy puntuales. Originalmente, serían importantes para la supervivencia, pero ahora están reservadas a determinados aspectos del rendimiento deportivo y la imagen corporal. Que cada cual valore si le interesan o no a la vista de lo que implican.

Para los demás, y sobre todo en la rehabilitación cardiaca, lo que nos interesa, tanto por eficacia como por seguridad, es trabajar con un número moderado de repeticiones aproximadamente al 70% de una RM.  

En la próxima entrada la maniobra de Valsalva. Nos dicen que conviene evitarla. ¿Es eso cierto? Disecaremos el sentido fisiológica del Valsalva y sacaremos nuestras propias conclusiones.

Otras entradas de la serie: